Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The eastern branch of the East African Rift System hosts many shallow modern lakes and paleolakes, which can be sensitive recorders of changing climate conditions (complicated by tectonics) during the past few million years. However, many of such lakes are saline–alkaline (salty and high pH), and these conditions do not easily preserve pollen and other biologically derived paleoclimate indicators. Fortunately, some preserved minerals that formed in these extreme environments reflect subtle shifts in lake water chemistry (controlled by changes in climate conditions) and therefore provide a continuous record of local and regional climate change. We present two different mineral proxies (zeolites and clays) from two different paleolake basins (Olduvai Gorge, Tanzania, and Chew Bahir, Ethiopia) as examples.more » « less
- 
            Abstract Understanding eastern African paleoclimate is critical for contextualizing early human evolution, adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from key time windows that resolve long-term trends, variations, and high-latitude effects on tropical African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude summer insolation during most of the early and middle Pleistocene, with little evidence that glacial–interglacial cycles impacted rainfall until the late Pleistocene. We observe the influence of high-latitude-driven climate processes emerging from the last interglacial (Marine Isotope Stage 5) to the present, an interval when glacial–interglacial cycles were strong and insolation forcing was weak. Our results demonstrate a variable response of eastern African rainfall to low-latitude insolation forcing and high-latitude-driven climate change, likely related to the relative strengths of these forcings through time and a threshold in monsoon sensitivity. We observe little difference in mean rainfall between the early, middle, and late Pleistocene, which suggests that orbitally-driven climate variations likely played a more significant role than gradual change in the relationship between early humans and their environment.more » « less
- 
            null (Ed.)The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To overcome this problem we present herein a new multiband wavelet age modeling (MUBAWA) technique that is particularly suitable for such situations and demonstrate its use on a 293 m composite core from the Chew Bahir basin, southern Ethiopian rift. In contrast to traditional tuning methods, which use a single, defined bandpass filter, the new method uses an adaptive bandpass filter that adapts to changes in continuous spatial frequency evolution paths in a wavelet power spectrum, within which the wavelength varies considerably along the length of the core due to continuous changes in long-term sedimentation rates. We first applied the MUBAWA technique to a synthetic data set before then using it to establish an age model for the approximately 293 m long composite core from the Chew Bahir basin. For this we used the 2nd principal component of color reflectance values from the sediment, which showed distinct cycles with wavelengths of 10–15 and of ∼40 m that were probably a result of the influence of orbital cycles. We used six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an approximate spatial frequency range for the orbital signal. Our results demonstrate that the new wavelet-based age modeling technique can significantly increase the accuracy of tuned age models.more » « less
- 
            null (Ed.)We present new mineralogical and geochemical data from modern sediments in the Chew Bahir basin and catchment, Ethiopia. Our goal is to better understand the role of modern sedimentary processes in chemical proxy formation in the Chew Bahir paleolake, a newly investigated paleoclimatic archive, to provide environmental context for human evolution and dispersal. Modern sediment outside the currently dry playa lake floor have higher SiO 2 and Al 2 O 3 (50–70 wt.%) content compared to mudflat samples. On average, mudflat sediment samples are enriched in elements such as Mg, Ca, Ce, Nd, and Na, indicating possible enrichment during chemical weathering (e.g., clay formation). Thermodynamic modeling of evaporating water in upstream Lake Chamo is shown to produce an authigenic mineral assemblage of calcite, analcime, and Mg-enriched authigenic illitic clay minerals, consistent with the prevalence of environments of enhanced evaporative concentration in the Chew Bahir basin. A comparison with samples from the sediment cores of Chew Bahir based on whole-rock MgO/Al 2 O 3 , Ba/Sr and authigenic clay mineral δ 18 O values shows the following: modern sediments deposited in the saline mudflats of the Chew Bahir dried out lake bed resemble paleosediments deposited during dry periods, such as during times of the Last Glacial Maximum and Younger Dryas stadial. Sediments from modern detrital upstream sources are more similar to sediments deposited during wetter periods, such as the early Holocene African Humid Period.more » « less
- 
            Paleoanthropologists have long speculated about the role of environmental change in shaping human evolution in Africa. In recent years, drill cores of late Neogene lacustrine sedimentary rocks have yielded valuable high-resolution records of climatic and ecosystem change. Eastern African Rift sediments (primarily lake beds) provide an extraordinary range of data in close proximity to important fossil hominin and archaeological sites, allowing critical study of hypotheses that connect environmental history and hominin evolution. We review recent drill-core studies spanning the Plio–Pleistocene boundary (an interval of hominin diversification, including the earliest members of our genus Homo and the oldest stone tools), and the Mid–Upper Pleistocene (spanning the origin of Homo sapiens in Africa and our early technological and dispersal history). Proposed drilling of Africa's oldest lakes promises to extend such records back to the late Miocene. ▪ High-resolution paleoenvironmental records are critical for understanding external drivers of human evolution. ▪ African lake basin drill cores play a critical role in enhancing hominin paleoenvironmental records given their continuity and proximity to key paleoanthropological sites. ▪ The oldest African lakes have the potential to reveal a comprehensive paleoenvironmental context for the entire late Neogene history of hominin evolution.more » « less
- 
            Abstract Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 yearsbp(episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 yearsbp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence ofHomo sapiensin eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 yearsbp) could have facilitated the global dispersal ofH. sapiens.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
